The effect of 6 weeks core stabilization training program on the balance in mentally retarded students

Rahmat Ahmadi¹,², Daneshmandi Hasan¹, Barati Amir Hosin²

¹- Guilan University, Faculty of Sport Science and Physical Education, Department of Physical Education & Sport Sciences, Rasht, Iran
²- Shahid Rajaee Teacher Training University, Faculty of Sport Science and Physical Education, Department of Physical Education & Sport Sciences, Tehran, Iran

*Corresponding author, Email: rahmatahmadi23@yahoo.com

Abstract

Mental retardation is one of the most common mental disabilities that are allocated about 3% of the world’s population. The purpose of this study was to examine the effect of core stabilization training program on the balance of mentally retarded students. Our subjects included 31 male mentally retarded students in two groups (CTL, 14 patients with a mean age of 11/07±3/02years, height 152±7/86cm, weight 44/07 ± 8/08kg) and (17 TRN group with a mean age 11/23 ± 1/95years, height 147±7/07cm, weighing 38/11±4/85kg). TRN group performed a core stabilization program for 6 weeks and three times per week. The core can be described as a muscular box with the abdominals in the front, par spinals and gluteals in the back, the diaphragm as the roof, and the pelvic floor and hip girdle musculature as the bottom. Pre and post-test of Y test was done for two groups afterward. Independent and dependent t-test used to analyze the data p≤0.05. The dynamic balance was measured with the modified Star Excursion Balance Test (Y test). Results showed significant differences in mean posterolateral and Posteromedial in the experimental group in post test (p ≤0.05) but insignificant on anterior direction (p ≤0.27). Core stabilization training program may improve the dynamic balance and can be used with other training programs.

Keywords: Mental Retardation, Core Stability, Dynamic Balance, Y Test

Introduction

Mental retardation (MR) causes important effects on children physical fitness, as well as cognitive activities during life span. Most research in the literature states that children with MR have poor level of physical fitness compared with their nondisabled peers (Yilmaz et al., 2009). These studies found that children with MR have a low level of cardiovascular endurance, muscular strength, muscular endurance, running speed, balance and agility (Yilmaz et al., 2009). It is well known that children with MR have isolation problems in society what leads to their physical inactivity (Horvat, Franklin, 2001). Some research reports indicate that children with MR achieve very low scores in cardiovascular fitness tests (Vannier, Faith, 1975; oktem, 1987). In addition, several studies reported a significantly positive correlation between inactive lifestyles and cardiovascular disease. Therefore, physical activities should be established for children with MR, to develop their cardiovascular fitness (Yilmaz, et al., 2009). Children with intellectual disabilities (ID) are also characterized by delay of motor milestones and impairment of sensorimotor function that affects sensory, neuromusculoskeletal and motor system (Yilmaz et al., 2009). According to the American Association of Mental Retard (2006), the motor development of those children's can present functional incapacities, limiting the execution of activities and restricting the participation of several situations of the real life. Therefore it is important to analyze the individuals’ motor aspects with ID. One of the variables to be analyzed is the balance. That requires inputs from visual, somatosensory and vestibular inputs as well as their
integration to reference the self within the environment and deficits in balance may result in delayed motor development because as postural control is generally presumed to be a precondition for the development of motor skills (Gorla et al., 2010). However, current data regarding the effects of intellectual disability on balance performance are limited. Balance is an important component of daily activity and athletic performance (Hessari et al., 2011). Balance plays a curtail role in almost all sport events. Either in shooting which requires the least amount of movements or dynamic sports such as gymnastics and wrestling, which require agility in conjunction with maximum balance, balance plays a critical role in success and failure (Gary, Gambetta, 2000). Specialists believe in the important role of posture control and balance in doing tasks such sitting, standing and walking. The core encompasses the lumbopelvic-hip complex (with 29 muscles of Insertion) in which the center of gravity is located and where all movements begin (Bergmark, 1989). Core stability is the motor control and muscular capacity of the lumbopelvic-hip complex. Normal function of the stabilizing system is to provide sufficient stability to the spine to match the instantaneously varying stability demands due to changes in spinal posture and static and dynamic loads. Panjabi proposes that spinal stabilization is dependent on the interplay between passive, active and neural control systems so that if deficit occurs in one of the systems, other systems will try to compensate with prevention of injury (Panjabi, 1992). Clark (2000) stated that the core function to maintain postural alignment and dynamic postural equilibrium during functional activities, which helps to avoid serial distortion patterns, thus improving athletic performance. (Leetun, 2004) suggests that core stability is one of the factors related to lower extremity injury. Also core stabilization training is a main portion of rehabilitation programs in people with low back pain (King, 2000). There is experimental evidence from studies that core stabilization exercise has beneficial effects on balance control (Gary, Gambetta, 2000). These studies are done on athletes so that core stabilization training program is included in athletic movement. In this study we attempt to investigate the effect of core stabilization training on balance in people with mentally retarded. Regarding the role of vestibular system in maintaining balance, ears are taken in to account as the sensory-balance limbs. Some studies reported that compared to healthy people, deaf ones have less skills in balance and they rely on sight outputs in balanced tasks (Hessari et al., 2011). Therefore, the aim of this study is to assess the outcome of six weeks core stabilization training program on the dynamic balance in mentally retarded students.

Materials and Methods

Subject
This study was mid experimental. Our subjects included 31 students boys mentally retarded in the two groups (control, 14 patients with a mean age of 11.07±3.02, height 152±7.86, weight 44.07 ± 8.08) and (17experimental group with a mean age 11.23 ± 1.95, height 147±7.07, weighing 38.11±4.85) of the random pare selected. The two groups were with 50-70 IQ level. Subjects signed an informed consent form and answered a demographic. Injury history questionnaire, which was used to obtain background information from each subject. Any they were free of lower and upper extremity pathology, neurological and visual disorders, and none of them used medication and did not perform any core stabilization, strengthening and balance program within the past six months and they were matched in age and physical activity level.

Procedure
At the orientation meeting, subjects were explained the purpose of this study, training protocol and balance test. The participant's dominant leg was noted and measured, as determined as the leg that would normally be used to kick a soccer ball (Hertel et al., 2000). Subjects were categorized randomized into two groups, training (TRN: n=17) and control (CTL: n=14). Training group performed a core stabilization training program for eight weeks. The control group did not perform any of the training exercises. Subjects did balance tests one week prior to the beginning of the core stabilization training program (pre-test) and one week after the Conclusion of the core stabilization training program (post-test). An independent t test was conducted to compare pretest and posttest between groups. In addition, a depended t test used to compare pretest and posttest in each group. The experiment wise alpha level was set at (P<.05).

Core Strength Training Protocol
The control group did not receive the TRN protocol; they were instructed to maintain their training routines and to report any alterations to the investigator. The TRN group received the TRN program that consists of 5 core-related exercises performed 3 times per week for 6 weeks. The following 5
exercises were visually demonstrated and verbally instructed by the investigator after the pre training test: a) abdominal crunch on a stability ball to target abdominal muscles b) back extension on a stability ball to target back extensor muscles c) supine opposite 1-arm, 1-leg raise. Hip extensor muscles d) hip raise on a stability ball to target back. Hip extensor muscles e) Russian twist on a stability ball to target abdominal muscles. The time for every exercise was ten minutes. These exercises have been used in previous studies to determine the effects of TRN (Lahatinen et al., 2007). The exercises are relatively well balanced, targeting core muscles (abdominal, hip flexor & extensor and back extensor muscles). Even though those exercises are relatively novice level according to Stanton et al. (Leetun, 2004), some of them are considered a challenge for those who have no experience in TRN. All exercises were fully instructed and demonstrated by a certified strength and conditioning specialist to ensure the understanding of the proper mechanics after the pre training laboratory test. In addition, the TRN group received a hard copy of exercise instructions including pictures and Training logs. Stability balls were provided to the experimental group because the treatment is intended for home training. They were instructed to fill out the training log after each session, and they also were contacted by the investigator at the end of each week to ensure adherence or to answer any concerns. Table 2 lists the volume of the training for the 6 weeks. According to Casio Lima et al, the total session volume should increase to challenge strength improvement rather than performing the same volume throughout the treatment. Therefore, this study was designed to increase the volume of exercise sessions every 2 weeks (Sato, Monique, 2009).

Y Balance Test Protocol
The Y test involved a taped star pattern with three excursions each at 135 degrees from each other, on an even floor surface. Subjects placed their non-dominant foot on the middle of the star pattern, while their dominant foot reached as far as possible to each of the three excursions (anterior excursion, posteromedial excursion, posterolateral excursion) while maintaining a single leg stance while reaching with the opposite leg to touch as far as possible along a chosen excursion. They touched the farthest point possible, and as light as possible, along a chosen excursion with the most distal part of their reach foot. Subjects were then instructed to return to a bilateral stance while maintaining their balance. A practice session of 6 times in each excursion followed by a one minute rest and then the measured average of three trials for each excursion was recorded as the subject’s dynamic balance scores. Trials were discarded and repeated if the reach foot was used to provide considerable support when touching the ground, the stance foot was lifted from the center of the star grid or if the subject was unable to maintain balance throughout each excursion (Fig. 2). Additionally, the leg length of the subject’s dominant extremity was used to normalize their dynamic balance scores (excursion length/leg length x 100) for a percentage of an excursion distance in relation to the subject’s leg length) and used for data analysis (Phillip et al., 2009).

Lower Limb Length
On a mat table with the subject supine, the subject lifted the hips off the table and returned them to starting position. Then, the examiner passively straightened the legs to equalize the pelvis. The subject’s right limb length was then measured in centimeters from the anterior superior iliac spine to the most distal portion of the medial malleolus with a cloth tape measure (Hessari et al., 2011).

Results
Table 1 shows Mean and Standard Deviation of the general characteristics of subjects in training and control groups. Table 2 showed a Significant difference between pretest and posttest of dynamic balance for training group (P<0.05) while in control group it was not significant (P>0.05). Significant differences between groups was found in posterolateral excursion (t= 0.42, P= 0.001) and posteromedial excursion (t= 1/74, P= 0.007).

<table>
<thead>
<tr>
<th>Table 1: General Characteristics of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>TRN</td>
</tr>
<tr>
<td>CTL</td>
</tr>
</tbody>
</table>
Table 2: Descriptive Statistics for the Pre and post Test Data for the Y Test

<table>
<thead>
<tr>
<th>excursion</th>
<th>group</th>
<th>pretest Mean ± SD</th>
<th>posttest Mean ± SD</th>
<th>t</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>CTL</td>
<td>65.57±7.57</td>
<td>72.07±8.98</td>
<td>1.802</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>TRN</td>
<td>68.53±6.92</td>
<td>77.94±9.07</td>
<td>1.135</td>
<td>0.271</td>
</tr>
<tr>
<td>Posterolateral</td>
<td>CTL</td>
<td>70.79±12.10</td>
<td>58.00±12.75</td>
<td>5.967</td>
<td>0.001*</td>
</tr>
<tr>
<td></td>
<td>TRN</td>
<td>72.29±7.47</td>
<td>80.88±8.50</td>
<td>0.426</td>
<td>0.688</td>
</tr>
<tr>
<td>Posteromedial</td>
<td>CTL</td>
<td>70.71±10.16</td>
<td>66.93±12.71</td>
<td>2.993</td>
<td>0.094</td>
</tr>
<tr>
<td></td>
<td>TRN</td>
<td>64.47±9.71</td>
<td>79.06±9.86</td>
<td>1.744</td>
<td>0.007*</td>
</tr>
</tbody>
</table>

Discussion and Conclusion

The purpose of this study was to examine the effect of core stabilization training program on the dynamic balance in mentally retard students. It is well known that children with MR have low physical fitness levels compared to children without disabilities (Yıldırım et al., 2011). Shepherd (1980) stated that this was highly related to low physical activity participation instead of physical disabilities (Hessari et al., 2011). In addition, (Pitetti, Champell, 1991) concluded that low physical fitness of MR children was related to the combination of low motivation and insufficient physical activity. Furthermore, research showed that mentally retarded populations have lower motor performance standards compared to populations without disabilities (Lahatimen et al., 2007). Results showed that core stabilization training improved dynamic balance in mentally retarded students. There was significant difference in posteromedial, posterolateral but insignificant in anterior direction for training group. The findings of this study was consistent with results of Carpes et al and Petrofsky et al., and Piegaro and Casio-Lima et al., (Crapes et al, Petrofsky et al, Piegaro, 2003; Lima et al., 2009).who noted that core stabilization training results in improving the balance but was not consistent with (Piegaro 2003; Swaney, Hess, 2003; Lewarchick et al., 2003). Although there were some basic similarities in their findings, the subject population and design of the studies were different. In the Piegaro study (2003), 39 healthy subjects were divided into four groups (core, core/balance, balance training and a control group), whereas the present study worked on deaf students. (Swaney, Hess, 2009) used healthy subjects for their control group and swimmers, while (Lewarchick et al., 2003) used healthy controls and football athletes. Since there is no universally accepted standard for core stabilization training program, it is not known what type, frequency or duration of exercises should be prescribed. Piegaro (2003) conducted a four weeks program in which the specified training programs were conducted two times a week for four weeks, instead of three times a week for five weeks. (Swaney, Hess, 2009) did a nine-week program and Lewarchick do a seven weeks program.

Also, Piegaro, Lewarchick (2003) and Swaney (2009) used laboratory methods for assessing the balance such as Biodex Stability System while here the functional test was applied. Furthermore, in more previous studies was focused on contraction and strengthening of global muscles, but in this study was tried to strength deep and local muscles of core in training program. It is surprising that in this study, core stabilization training had the greatest improvement for the easiest reach directions while had the least improvement for other directions. (Hertel et al., 2000) found the Y TEST requires neuromuscular control through proper joint positioning and strength from the surrounding musculature, throughout the test. Contraction of core stability muscles before initiation of limb movements, which is the feedforward posture reaction from neuromuscular system, shows that voluntary movement of the upper extremity is preceded by postural movements occurring in the lower extremity (pelvis, hips and trunk) that contributes to general dynamic organization of balance and inhibits postural disturbances. Core stabilization training program leads to sequencing the anticipatory activity and then reduces early perturbations of the center of gravity, which is a benefit for the individuals who need to remain in constant postural control. It is important to train movements and not muscles, so that everything works together. Training movements integrates and improves the function of the neuromuscular system in postural control. Furthermore the core is important because it is the anatomical location in the body where the center of gravity is located and movements stem from, therefore it seems strengthening of muscles of core causes the improvement of neuromuscular
Core stabilization training improves neuromuscular system efficiency which leads to optimal arthrokinematics in the lumbopelvic-hip complex during functional kinetic chain movements, optimal acceleration, deceleration, optimal muscular balance and provides proximal stability for efficient lower extremity movements. This effects lead to optimal function and lower extremity muscles strength, that can eliminate produced torque during reaching in Y test. Consequently Subjects can obtain more reach distance in Y test. In this study, the applied training protocol was so that subjects performed their task on unstable surface such as Swiss ball, and this challenged their balance. Results of our study showed no significant difference in anterior. It seems that core stabilization training had fewer effects on neuromuscular system control and muscles strengthening in this direction. One reason for this may be that these directions appeared to be the most difficult ones. (Hodges, Richardson, 1997) suggested making sure that the proper contractions occurred during the core stabilization training program which was paramount for determining the amount of neuromuscular controls that would be contributing to the Y test for optimum effects. However, our study did not implement any invasive techniques for measuring muscle activation. Only subject feedback and visual observation by the principle investigator served as the assessment of core activation, it is possible that subjects during core stabilization training were not able to contract stability muscles well. In conclusion, core stabilization training may be used to enhance dynamic balance in mentally retarded students and is applied in the clinical setting.

References